4-CBA Concentration Soft Sensor Based on Modified Back Propagation Algorithm Embedded with Ridge Regression
نویسندگان
چکیده
Algorithm Embeded with Ridge Regression Xuefeng Yan Weixiang Zhao 1(Automation Institute, College of Information Science and Engineering, East China University of Science and Technology, MeiLong Road 130, Shanghai 200237, P. R. China) 2(Department of Chemical Engineering and Center for Air Resources Engineering and Science, Clarkson University, Potsdam, NY 13699-5708, USA) Abstract Considering that there exist many factors having highly nonlinear effect on the concentration of the 4-carboxybenzaldehyde (4-CBA), which is the most important intermediate product of p-xylene (PX) oxidation reaction, a modified back propagation algorithm embedded with ridge regression (BP-RR) was proposed to develop a soft sensor of the 4-CBA concentration. To overcome the two main flaws of regular multi-layer neural networks, i.e. the tendency of overfitting and the difficulty to determine the optimal number of neurons for the hidden layer, firstly, a three-layer network is selected and the number of the hidden-layer neurons is determined according to the number of the training samples and the number of the neural network parameters. Then, BP is applied to learn from the training samples. In sequel, the ridge regression is employed to remove the multicollinearity among the hidden-layer-node outputs and obtain the optimal weights (and thresholds) between the hidden layer and the output layer to replace the original values obtained by BP. Thus the neural network model with good prediction ability is developed. In addition, the ridge regression uses heuristic differential evolution algorithm to optimize ridge parameter according to the prediction accuracy of the model. The results show that the optimal value of ridge parameter is adaptively determined according to the degree of multicollinearity among the hidden-layer-node output, and then the good prediction ability model with the robust character is obtained by BP-RR. The best and the mean prediction accuracies of the neural network models developed by BP-RR are higher than those of the neural network models trained by BP alone and obtained by pruning algorithms based on principle component analysis.
منابع مشابه
Predicting air pollution in Tehran: Genetic algorithm and back propagation neural network
Suspended particles have deleterious effects on human health and one of the reasons why Tehran is effected is its geographically location of air pollution. One of the most important ways to reduce air pollution is to predict the concentration of pollutants. This paper proposed a hybrid method to predict the air pollution in Tehran based on particulate matter less than 10 microns (PM10), and the...
متن کاملSoft Sensors for Kerosene Properties Estimation and Control in Crude Distillation Unit
Neural network-based soft sensors are developed for kerosene properties estimation, a refinery crude distillation unit side product. Based on temperature and flow measurements, two soft sensors serve as the estimators for the kerosene distillation end point (95 %) and freezing point. Soft sensor models are developed using linear regression techniques and neural networks. After performing multip...
متن کاملApplication of Linear Regression and Artificial NeuralNetwork for Broiler Chicken Growth Performance Prediction
This study was conducted to investigate the prediction of growth performance using linear regression and artificial neural network (ANN) in broiler chicken. Artificial neural networks (ANNs) are powerful tools for modeling systems in a wide range of applications. The ANN model with a back propagation algorithm successfully learned the relationship between the inputs of metabolizable energy (kca...
متن کاملDynamic Obstacle Avoidance by Distributed Algorithm based on Reinforcement Learning (RESEARCH NOTE)
In this paper we focus on the application of reinforcement learning to obstacle avoidance in dynamic Environments in wireless sensor networks. A distributed algorithm based on reinforcement learning is developed for sensor networks to guide mobile robot through the dynamic obstacles. The sensor network models the danger of the area under coverage as obstacles, and has the property of adoption o...
متن کاملSoft Sensors for Pulp Freeness and Outlet Consistency Estimation in the Alkaline Peroxide Mechanical Pulping (APMP) High-Consistency Refining Process
In the mechanical pulping process, some process state and product quality variables are difficult to measure on-line. In this paper, soft sensors were used to estimate Canadian Standard Freeness (CSF) and outlet consistency (Cout) after the high consistency refining stage of the alkaline peroxide mechanical pulping (APMP) process. After the secondary variables for modeling that are readily avai...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Intelligent Automation & Soft Computing
دوره 15 شماره
صفحات -
تاریخ انتشار 2009